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D E S I G N  OF A L A M I N A T E D  A N I S O T R O P I C  

C U R V I L I N E A R  B E A M  OF M I N I M A L  W E I G H T  

V. V. Alekhin UDC 539.3 

The problems of synthesis of laminated bodies is a promising line of investigation in the field of 
structural optimization. These problems have been studied in a number of papers [1-5] concerning the 
questions of design of heat-shielding panels, multilayer wave filters, and elastic laminated bodies. The 
composition of a structure and its geometric dimensions are chosen as control parameters in the problems 
of synthesis of laminated structures. A control parameter that characterizes a laminated-body structure is a 
stepwise function with a discrete range of values. Therefore, in deducing the necessary optimum conditions 
and in constructing a numerical algorithm, one should use the methods of the optimum-control theory. The 
structure and sizes of the laminated structure are determined in the process of optimization, although the 
number, sizes, and materials of the layers are not known beforehand. 

In the present paper, we consider the problem of synthesis of a multilayer curvilinear beam of minimal 
weight, which is bent under a uniformly distributed load, from a finite set of elastic homogeneous orthotropic 
and isotropic materials under given constraints on the beam strength and thickness. The necessary optimum 
conditions are obtained, a computational algorithm is built, and an example of calculation of the optimum 
beam is given. 

1. Formula t ion  of t he  Prob lem.  Let a set W consist of k homogeneous orthotropic and isotropic 
materials. It is required to synthesize a laminated curvilinear beam of minimal weight from the given set. 

Let rl and r2 be the radii of the inner and outer surfaces of the curvilinear beam (see Fig. 1) which is 
hinge-supported at the ends and loaded by an external pressure q [6]. We shall use the common center of the 
circumferences that constrain the beam as the origin of coordinates and the axis of symmetry as the polar r 
axis. The support reactions form equal angles/~ with the axis of symmetry. Let us denote the angle between 
the end cross sections of the beam by 2 ~o. By symmetry of the problem, we can consider half of the beam. In 
the case of a plane stress state, the stress-strain state of the multilayer curvilinear beam is described in the 
polar coordinate system (r, 0) by the boundary-value problem including the equations of equilibrium 

Oar + 10a~o a ~ -  ~ro cOaro 1 cOcro 2 a~o 
7 =~  0r =~ (1.1) G~r 

the relations of Hooke's law 
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"or-~a, ~o = Eo "rO-~r, 2r -~ra' "orEr = , r o E o ,  (1.2) 

where the strain-tensor components are expressed in terms of the radial ur (r, 0) and circumferential uo (r, 0) 
shears in the form 

OUr 

and the boundary conditions 
- -  at the curvilinear beam sides 

10ua ur 1 Our Oua us (1.3) 
r 00 + '7" '  2 r 1 7 6  0-'-0 - +  0---7 r '  

e)  = o, e)  = o, e)  = - q ,  e)  = o, (1 .4)  
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Fig. 1 

- -  at the beam ends, the integral conditions below are satisfied 
r2 

"fao dr = -qr2 sin~osin(~o- ~)cos a , farodr=qr2 
t-" 

rl r 1 

- -  at the axis of symmetry 

r2 
sin~ocos(~o-/3) fao(r- rz)dr = O; 

C08 ~ 
r l  

(1.5) 

uo(r, O) = O, are(r, O) = O; (1.6) 

- -  at the point of the hinge support  

Ur(rl, ~) COS (r - -  ~ )  - -  u S ( r l ,  ~ )  s i n  ((p - -  ~ )  = 0.  ( 1 . 7 )  

Here E,( r ) ,  E0(r), G,0(r),  vet(r), and v,o(r) are the medium's  distr ibuted characteristics: Young's modulus, 
shear modulus,  and Poisson's ratios of the beam-layer materials. 

At the inner boundaries ri E (rl,  r2) of the beam layers, where the medium's  characteristics undergo 
a discontinuity, one should specify the conjugation conditions (continuity of shears Ur and u0 and stresses ar 
and (frO): 

o)] = [u0(ri ,  0)1 = 0)1 = 0)1 = o. (1.8) 

Let a, R, and p. be the quantities having the dimension of stress, length, and density. We introduce 
new nondimensional variables (below, we omit the asterisk for nondimensional variables): 

u~=ui/R, r~=ri/R, ai*j=aii/a, a~*=a~/a, E*=Zi/a,  G;o=Gro/a, q*=q/a, p*=p/p. 

(a~ and p are the strength limits and densities of the materials from the set W). We make a replacement of 
the coordinates 

r = r I + X(r 2 - -  r l )  , x E [0, I], (1.9) 

which transforms the variable domain of definition of [rl, r2] into the constant one [0, 1]. We also introduce a 
stepwise function 

a(x) = {aj; x E [zj, z/+z), j = 1, . . . ,  n}, Xl = 0,  Zn+l = 1 (1.10) 

that  characterizes the multilayer-beam structure: the number,  sizes, and materials of the layers. The  values 
of a j  belong to the discrete f ini teset  

U = {oq, . . . ,  o~k}, (1.11) 

which corresponds to the given set W of materials. Now all characteristics of the materials from the set W are 
the distribution functions a(x)  in the range [0, 1]. It is convenient to define a set of integers U = {1, . . . ,  k) 
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as the set U. In this case, the expression c~(z) = i, z E [zj, zj+l), means that the j th  beam layer consists of 
the ith material from the set W. 

Since the function o(z) dictates the laminated-beam structure, while the sizes rl and r2 and the 
aperture angle ~ determine its geometry, we shall consider the pair {a(z), rl } as a control parameter (for 
definiteness, we assume that the outer radius r2 and the angle ~ are fixed). Here a(z) E U (1.11), and 

rl E [a, b] (1.12) 

(a and b are the given limits in which the beam thickness can vary). 
The problem of optimum design consists in the following. Among the step functions or(z) (1.10) with 

the range of values U (1.11) and the parameters rl from the region [a, b] it is required to find a pair of control 
functions {a(z), rl} that minimizes the weight functional 

r2 1 

r,l = j p( )r dr = J (1.13) 
rl 0 

with the given restriction on the strength 

rl(Z, O, ur, uo, a,, a,o, ~, rl) <. O. (1.14) 

Let us consider the Hoffman strength criterion for unidirectional composites [7] as restriction (1.14). 
In the case of a plane stress state, this criterion is written in the form 

, = ~0{(a0 - a , ) / ( a + a ~ ) +  (a; -a~ ' ) / (a+a; ) ]  + (a,olah) 2 

+ ~ , [ a , / ( a % ; )  + ( a ; -  a ,+)t(a,+a;)]-  1 ,< 0, (1.15) 

where a +, a~', a +, a~', and a~  are the strength limits of materials from the set W under tension and 
compression in the direction of the # and r axes and under shear. For isotropic materials, criterion (1.15) 
transforms to the Mises yield condition. Inequality (1.15) can be written in terms of Ur, u#, (r~, and ar0 using 
Hooke's law (1.2). 

2. Necessary  Opt imal i ty  Condit ions.  In order to obtain the necessary optimality conditions in 
problem (1.1)-(1.15), it is required to construct expressions for variations in goal functional (1.13) and 
restriction (1.15) in terms of variations in the control pair {a (x), rl}. For this purpose, we shall transform 
boundary-value problem (1.1)-(1.8). The solution of this problem for a homogeneous anisotropic curvilinear 
beam is given in terms of stresses in [6]. Therefore, in each homogeneous layer of the multilayer beam, the 
solution of problem (1.1)-(1.8) in terms of shears u~ and u0 and in terms of stresses at and (rr0 has the form 

t tr(r ,  0) ---- u l ( r )  + u2( r )cos  0 + u3(r)0 sin 8, 

tts(r , O) = Vl(r')O q-v2(r ) sin 0 + u3(r)O cos 0, (2.1) 

a,(r, 0) = al(r) + r(r) cos 0, a,o(r, 0) = r(r) sin 0. 

Conjugation conditions (1.8) at the inner boundaries of the beam layers and relations (1.9) and (2.1) 
permit us to introduce the following phase variables which are continuous in the range [0, 1]: 

Z(~) = (Ul, 1)1, O"1, ~t2, I)2, r ,  It3) t (2.2) 

(the superscript t refers to a vector or matrix transposition). 
Initial problem (1.1)-(1.8) now can be represented in the form of a boundary-value problem for the 

unknown Z(z) (2.2): 

z'(x) = A(~, rx, x)Z(~); 

z3 (0 )=zh (0 )=z6 (0 )=0 ,  z 3 ( 1 ) = - q ,  z6(1)=0; 
1 1 

/ - f [ s i n ~ s i n ( ~ - 3 ) - r 2 ]  COS(~ fl) z3r(r2-rl)dx=qr2 rl z 6 ( r 2 - r l ) d x = q r 2  cosfl ' COS 
0 0 

(2.3) 

(2.4) 

(2.5) 
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Here the nonzero elements aid of the matrix A (a, r l ,  x) have the form 

- -  t10r (r2 -- r l) ,  a13 ---- a46 = all = a12 = a44 = a45 = a47 = r r ES (r2 - r l) ,  

r2 - rl  Es  
a22 -- a54 -- a55 = -a57  = r , a31 = a32 -- a64 -- aBh = a67 = -~- (r2 r l) ,  

vsr - 1 r2 - r l  lvOr -- 2 

r GrO r 

Let us clarify how boundary conditions (2.4) and (2.5) are obtained from boundary conditions (1.4)- 
(1.7). It should be noted that in view of the representation (2.1) and equilibrium equations (1.1), three integral 
conditions (1.5) are reduced to two integral boundary conditions (2.5), because the first two conditions from 
(1.5) turn out to be dependent on each other. From an analysis of system (2.3), it then follows that if z4(z)  
and zh(z)  are a solution of system (2.3), the functions ~'4(x) = (z4(z) - d) and ~'5(x) = ( z s ( z )  +d) ,  where d is a 
constant, are also the solutions. Therefore, one can set, for example, zh(0) = 0 in the boundary conditions and 
find the constant d separately after solving boundary condition (2.3)-(2.5) from boundary condition (1.7), 
from which it follows that 

1 
d = ~ {[Zl(0) + z4(0) cos to] cos (~ - fl) - [z2(0)cp + zs(0) sin ~] sin (~ - ~) + zr(0)~sin ~}. (2.6) 

cos 

Boundary condition (1.6) on the axis of symmetry is satisfied automatically by virtue of the representation 
of the solution in the form of (2.1). 

Initial problem (1.1)-(1.8) was thus reduced to solving boundary problem (2.3)-(2.5) for the unknown 
vector-function Z(x). 

Let us replace the local restriction (1.15) by an equivalent integral restriction 

1 

F, [,,, ~1, z] = 0 . 5 / { ,  (...) + I, ( . . . ) l}dv = -J ~, (~, ~1, x, z )  = o, (2.7) 
V 0 

where V is the volume of the curvilinear beam, while by virtue of the parity of the function r / ( . . . )  with respect 
to the angle 0 in the range [-r (p], 

((,, r , ,  x, z )  = ( ~  - ~1)[~ + x(~2 - r l ) ] / { ,  @1 (.. ~ + (.. , ) l}d~.  (2.S) 
0 

Note that functional (2.7) has the Frechet derivative [8], because the integrand I~/(...)], which is a modulus of 
the Hoffman strength criterion, can vanish in the bent laminated beam only on the zero-measure set consisting 
of a finite number of points. 

Let now the pair {(~(z), ri} be the optimum control from the admissible set (1.11) and (1.12) which 
minimizes the functional (1.13) and satisfies restriction (2.7). Let us consider the perturbed control {ct*(z), r i +  

~ }  [81: 

a*(x)  = { g(z),a(x), zx q~E D,D' g(Z)mes (D)E U,< r rl + 6rl e [a, b], 16rll < r (2.9) 

(D C [0, 1] is a set of small measure and e > 0 is a small quantity). Using the standard technique [8], we can 
obtain the principal parts of the increments of functionals (1.13) and (2.7) [for brevity, the arguments related 
to the unperturbed control {or(z), ri} are omitted]: 

6F[ . . . ]  = / { @  ((~*, . . . ) -  @ (o~, . . . ) } d z  + $6r l ;  (2.10) 
D 

6F1 [...] = f{M(,~*, ...) - M(r~, . . . ) } d x  + $16rl .  (2.11) 
D 
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Here 

M ( a .  n ,  x ,  Z ,  = x ,  - - ( 2 . 12 )  

/ ) 0 sin~sin(~-,) 
1 0 r rl, x)dx, $1 = M(a, rl, x, Z, ~)dz  - 72qr2 

s = cos 
0 0 

The vector ~(x)  of conjugated variables satisfies the boundary-value problem 

0 ~1(~, x, Z) 71B 72C; (2.13) @'(x) = -A t (a ,  rl, x )@(x ) -  - ~  rl, - - 

r  = ~b2(0) = r  = r  = 0, ~)1(1) = r  = r  = r = r = 0, (2.14) 

where the nonzero components bi and ci of vectors B and C have the form 

56 = r2 --  r l ,  C3 = [rl  + Z(r2  -- r l ) ] ( r 2  --  r l ) .  

The vector @(z) and the Lagrange multipliers "/1 and "/2, which were used for taking into account the integral 
boundary conditions (2.5) in constructing the variation aFl[...] in restriction (2.7), are determined from 
boundary-value problem (2.13) and (2.14). 

Now let us form an extended functional 

J[a, rl] = F[a, rl] + A1FI[a, rl, Z] + A2{a- rl + {~} + Aa{rl - b+ {22} (2.15) 

(A1, A2, A3 and {1, {2 are the Lagrange multipliers and penalty variables). Let us represent the variation in 
functional (2.15) using expressions (2.10)-(2.12) as 

= / { H ( a ,  .. .) - g(a*, ...)}dx + {S + A1S1 - A2 + Aa}&I + 2 A2{16{1 + 2 A3{2~{2; (2.16) ~J[.. 
D 

g ( a ,  rl, x, Z, @) = - ~ ( a ,  rl, x) - A1M(a, rl, x, Z, @). (2.17) 

Since the control pair {a(x), rl} is optimal (minimizing), the condition aJ  [...]/> 0 must be satisfied 
for any admissible control pair {a*(z), rl + &l} (2.9). Then, in view of the arbitrariness of the variations 6rl 
and a{i, from expression (2.16) we obtain 

S + AIS1 - A2 + A3 = O; (2.18) 

, k 2 ( a - r l ) = 0 ,  A a ( r l - b ) = 0 ,  A2>t0, Aa/>0, (2.19) 

and owing to the fact that the small-measure set D can be dense almost everywhere in the interval [0, 1], 
the maximum condition for the Hamiltonian H (...) (2.17) with respect to the argument a must be satisfied 
almost for all x e [0, 1] [8]: 

H (a, rl, z, Z, 9 )  = max g (a*, rl,  x, Z, ~I*). (2.20) 
a*(z)eU 

Thus, we conclude that the optimum control {a(z), rl} and the corresponding optimum trajectory 
Z(x) and the vector @(x) of conjugate variables must satisfy boundary-value problems (2.3)-(2.5), (2.13), 
and (2.14), relations (1.11), (1.12), (2.7), and (2.19), and optimality conditions (2.18) and (2.20). 

3. Compu ta t i ona l  Algor i thm.  The basic idea of the direct method for solving the problems of 
optimum design consists in constructing a sequence of controls {a(z), rl}j (j = 1, 2, ...) that minimizes 
the goal functional (1.13). For this purpose, introducing a uniform grid {z~}, we shall divide the interval 
[0, 1] into n intervals Di simulating the sets of small measure. Let us define the initial control {a(x), rl} 
from the admissible domain (1.11), (1.12), and (2.7). Evidently, a(z) is a stepwise function with constant 
intervals Di = [xi, xi+i), in which it takes on the values from the set U (1.11). On a certain set Di, the next 
approximation {a*(x), rl + at1} is sought in the form of (2.9) 

f ai, z E D ,  a i e U ,  a* (a~) (3.1) / a ( z ) ,  z D; 
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TABLE 1 

Material 

Fiber-glass plastic 
Carbon-filled plastic 
Boron plastic 
Organic plastic 
Sphere plastic 
Duralumin 
Titanium alloy 
Steel 
Copper 

P 

2.13 
1.61 
2.02 
1.36 
0.65 
2.85 
4.6 
7.8 
8.93 

E0 

6070 
18140 
20130 
8430 
270 

7100 
12,000 
21,000 
11200 

E~ 

2488 
1035 
2172 
484 
270 

7100 
12,000 
21,000 
11200 

Gr# /]0r 

1197 0.23 
686 0.28 
538 0.17 
284 0.32 
106.3 0.27 

2669.2 0.33 
4545.5 0.32 
8076.9 0.3 
4210.5 0.33 

129 
149.4 
137.3 
118.6 

4.5 
44 
8O 

120 
2O 

100 
110 
120 
30 

4. 
44 
80 

120 
20 

4.( 
4 
5.( 
1.: 
4. 

44 
8O 

120 
20 

13 
18.~ 
2O 
12 
4., 

44 
80 

120 
2O 

4.6 
6.76 
6.3 
2.76 
2.6 

25.4 
46.19 
69.28 
11.55 

rl Jr ~rl E [a, b], [~rl[ < ~ (3.2) 

and is determined from the linearized optimization problem: to find on a given set an admissible perturbation 
{aj, 6ri} that  ensures a max imum decrease in the functional F [...] (1.13) or, in other words, a minimum of 
variation 6El . . ]  (2.10) under conditions (3.1) and (3.2) and linearized restriction (2.7) 

F1 [a*, rl  + 6rl,  Z Jr 6Z] ~ Fl[a ,  r l ,  Z] + 6F1 [a, r l ,  Z] = 0, (3.3) 

where the expression for 6F1 [...] is given by formula (2.11). This linearized problem is a variant of the problem 
considered in Secs. 1 and 2. From here we deduce immediately that  the op t imum perturbation {ai ,  6rl} must 
satisfy the relations 

6rl = -~/{S + AISI - A2 Jr A3}, "7 I> O; (3.4) 

h2(a - rl  - (~rl) = 0, h3(rl + 6ri - b) = 0, A2 t> 0, ha/> 0 (3.5) 

and restrictions (3.2) and (3.3). 
The Lagrange multipliers 7, h2, and ha are found from (3.2) and (3.5) in the process of numerical 

calculation. The best correction a1 (3.1) is determined in the following way. From relations (3.3) and (3.4), 
we obtain 

~r 1 ---- - - ( / [ M ( ~ j , . . . ) -  M(or Jr rl[ot, rl,Z]}/Sl. (3.6) 
Di 

A correction aj that  minimizes the variation 6F[...] (2.10) is then found from the condition 

/ H(clj,rl,x,Z,~)dx--- max / H((~,,rl,x,Z,~)dx a.EU 
Di D{ 

[H(a . ,  r l ,  z, Z, ~ )  = -(I)(a. ,  r l ,  x) Jr (S/S,) M ( ~ . , r , , z ,  Z, @)]. 

For $1 = 0, the best correction {aj ,  6rl} is determined from the relations 

= - ~ , { S -  h2 Jr h3}, / @(ai,rl,x)dx = rain [ @(~.,rl,x)dx 6rl 
a=EU J 

D~ Di 

with allowance for restrictions (3.2), (3.3), and (3.5). 
Having thus constructed the new control pair {a* (x), rl  Jr 6rl}, we assume it as the initial one and 

construct the next approximation: The process is considered completed on a given division grid {xi} if the 
control {(~ (x), rl } does not change on any of the sets Di. The solution obtained is a local min imum in the 
problem considered. 

E x a m p l e .  The set W consists of nine materials having the dimensionless mechanical and physical 
characteristics presented in Table 1 (we used some data from [9]). 
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The inner beam surface, whose radius r l  can vary in the interval [0.75, 0.9], is free from load. The 
uniformly distributed load q = 2 is defined on the outer beam surface whose radius r2 is considered fixed and 
equal to unity. The beam aperture angle is ~ = 45 ~ and the hinge-support angle is fl = 30 ~ The beam is 
divided (in thickness) into 50 equal parts which simulate the sets Di. 

A four-layer beam with layers [0.75, 0.765] and [0.78, 0.795] of titanium alloy, [0.765, 0.78] of steel, 
and [0.795, 1] of duralumin was taken as an initial approximation. As a result of optimization, we obtained 
a seven-layer beam with inner radius rl = 0.80432, weight F* = 1.4258, and layers [0.80432, 0.82389] and 
[0.96086, 0.99609] of carbon-filled plastic, [0.82389, 0.8278] of steel, [0.8278, 0.84345] and [0.84737, 0.96086] 
of duralumin, [0.84345, 0.84737] of titanium alloy, and [0.99609, 1] of sphere plastic. The titanium-alloy beam 
with inner radius rl = 0.78831 and weight F. = 2.7354 is the lightest homogeneous beam satisfying the 
constraints on the strength (1.15) and body thickness (1.12) under the given load q. For the optimum beam, 
the relative gain in weight in comparison with the given homogeneous beam is (1 - F*/F.) �9 100% = 47.9%. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 96-01-01527). 
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